Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Pseudokobusine

Kinkini Bhattacharyya, ${ }^{\text {a* }}$ Tanusree Kar, ${ }^{\text {a }}$ Gabriele Bocelli, ${ }^{\text {b }}$ Lara Righi ${ }^{\text {b }}$ and Balwant Shankar Joshi ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700032 , India, ${ }^{\text {b }}$ Centro di Studio per la Strutturistica, Diffractometrica del CNR, Viale delle Scienze, Palazzo Chimico I-43100, Parma, Italy, and ${ }^{\mathrm{c}}$ Institute of Natural Products Research, Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA
Correspondence e-mail: mstk@mahendra.iacs.res.in

Received 27 June 2000
Accepted 19 September 2000
The title compound, hetisan- $6,11 \beta, 15 \beta$-triol, $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3}$, is a hetisane-type diterpenoid alkaloid. It consists of six sixmembered rings and two five-membered rings. The fused-ring system contains three chair, two boat, one distorted boat and two envelope conformations. Intramolecular and intermolecular hydrogen bonds are present between the O atoms, with $\mathrm{O} \cdots \mathrm{O}$ separations of 3.006 (3) and 2.743 (3) \AA, as well as an $\mathrm{O} \cdots \mathrm{N}$ intermolecular interaction of 2.887 (3) \AA.

Comment

Investigations on the alkaloid constituents of the roots of Aconitum nasutum obtained from Trabzon-Sürmene, Arpali, Turkey, led to the isolation of the title compound, (I). Aconite root and alkaloids of this plant have been used for thousands of years in Eurasia as a powerful toxin, an arrow poison and a drug. Since ancient times, the Chinese have processed aconite roots to decrease its toxicity for safe usage in the treatment of weak constitution, poor metabolism, dysuria, cardiac weakness, gout, rheumatism, neuralgia and chill, while Western medicine utilizes it for chronic rheumatism and neuralgia (Saito et al., 1982).

(I)

The molecular structure of (I) (Fig. 1) contains an alkenyl $=\mathrm{CH}_{2}$ group attached at C 16 with a $\mathrm{C}=\mathrm{C}$ distance of 1.303 (4) \AA. It has a masked amino alcohol group ($\mathrm{N}-\mathrm{C}-$ OH) which is generally stable to oxidation and reduction (Natsume, 1962). Considering the three hydroxyl groups of the molecule, the tertiary hydroxyl at C6 forms a masked amino alcohol with the tertiary N 1 atom and one of the two secondary hydroxyl groups is beside the allyl alcohol func-
tional group. There was an ambiguity in the location of the remaining hydroxyl group. Two alternate structures were attributed to pseudokobusine, based on the two positions of the third hydroxyl group at either C11 or at C12 (Natsume, 1962). The X-ray structure analysis has established the former structure, with the hydroxyl group at C 11 .
The value of the Flack (1983) parameter obtained, -0.5 (16), is inadequate to indicate the absolute configuration. The absolute stereochemistry has been established by convention (Okamoto et al., 1962) and hence the present enantiomer has been retained. There are chiral centres in the present structure and the respective configurations are $4 R, 5 R$, $6 R, 8 R, 9 S, 10 S, 11 R, 12 R, 14 S, 15 S$ and $20 R$.

Figure 1
The structure of (I) with 30% probability displacement ellipsoids and the atom-numbering scheme.

The molecule is composed of eight fused rings, six of which are six-membered and two of which are five-membered. Rings $A(\mathrm{C} 1-\mathrm{C} 5 / \mathrm{C} 10), B(\mathrm{C} 5-\mathrm{C} 9 / \mathrm{C} 10)$ and $D(\mathrm{C} 6-\mathrm{C} 8 / \mathrm{C} 14 / \mathrm{C} 20 / \mathrm{N} 1)$ adopt the chair conformation (Table 2), ring $C(\mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 11 /$ $\mathrm{C} 12 / \mathrm{C} 16 / \mathrm{C} 15)$ is in a distorted boat conformation, ring $E(\mathrm{C} 8 /$ $\mathrm{C} 12-\mathrm{C} 16)$ is in a boat conformation, while ring F (N1/C19/C4/ $\mathrm{C} 5 / \mathrm{C} 10 / \mathrm{C} 20$) is in a distorted boat conformation. The two fivemembered rings, $G(\mathrm{C} 4-\mathrm{C} 6 / \mathrm{N} 1 / \mathrm{C} 19)$ and $H(\mathrm{C} 8-\mathrm{C} 10 / \mathrm{C} 14 /$ C20), adopt an envelope conformation with the apex at C6 and C 8 , respectively. The O 21 atom of the hydroxyl group at C6 is equatorial to ring B and the associated torsion angles are -174.7 (2) ($\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 21$) and -179.2 (2) ${ }^{\circ}(\mathrm{O} 21-$ $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8)$. The hydroxyl group at C 11 is twisted from the plane of ring C, with torsion angles of -105.6 (3) (C8-C9$\mathrm{C} 11-\mathrm{O} 22)$ and $55.9(3)^{\circ}(\mathrm{O} 22-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 16)$. The alkenyl group at C 16 is equatorial to ring C, with torsion angles of -129.2 (3) ($\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 16-\mathrm{C} 17)$ and $-168.4(3)^{\circ}$ (C8-C15-C16-C17). The hydroxyl group at C15 is twisted from the plane of ring C, the torsion angles being -105.4 (3) $(\mathrm{O} 23-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 12)$ and $56.6(3)^{\circ}(\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 15-\mathrm{O} 23)$. The ring-puckering parameters (Table 2) were calculated using the method of Cremer \& Pople (1975). The Csp ${ }^{3}-\mathrm{N}$ bond lengths range between 1.486 (4) and 1.513 (3) \AA. . The Csp ${ }^{3}-\mathrm{O}$ bond lengths range from 1.403 (3) to 1.448 (3) \AA.

The O21 hydroxyl group at C16 forms an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the O 22 hydroxyl group bonded to $\mathrm{C} 11\left[\mathrm{O} 21 \cdots \mathrm{O} 22^{\mathrm{i}} 2.743\right.$ (3) \AA; symmetry code: (i) $x+1, y, z]$, and an intramolecular hydrogen bond is formed by O 22 with the O 23 hydroxyl group at C 15 [O22...O23 3.006 (3) \AA A . An $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond completes the intermolecular interactions [O23 $\cdots \mathrm{N} 1{ }^{\text {ii }} 2.887$ (3) \AA; symmetry code: (ii) $\left.1-x, \frac{1}{2}+y,-z\right]$. In kobusine methiodide, the contact distance between the two O atoms of the two hydroxyl groups at the same position as in the present molecule was calculated to be $2.81 \AA$, indicating a strong intermolecular hydrogen bond (Pelletier et al., 1970).

Experimental

The crude alkaloid extract obtained from the roots of Aconitum nasutum was first separated by vacuum liquid chromatography (VLC) on basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ and eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ mixtures. VLC fractions 32-36 ($\mathrm{CHCl}_{3} / \mathrm{MeOH} 90: 1$) (942 mg) were separated on a basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ rotor with hexane/chloroform/methanol mixtures and pseudokobusine was subsequently isolated. Crystals of the title compound were obtained from a solution of the compound in methanol by slow evaporation at room temperature.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3}$
$M_{r}=329.43$
Monoclinic, $P 2_{1}$
$a=8.0746$ (8) \AA
$b=11.4613$ (11) \AA
$c=9.1121$ (9) A
$\beta=90.338(2)^{\circ}$
$V=843.27(14) \AA^{3}$
$Z=2$
$D_{x}=1.297 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6766
\quad reflections
$\theta=3.00-30.55^{\circ}$
$\mu=0.086 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Plate, colourless
$0.38 \times 0.26 \times 0.19 \mathrm{~mm}$

Data collection

Bruker 1000 diffractometer
ω scans
Absorption correction: empirical
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.97, T_{\text {max }}=0.98$
6766 measured reflections
2455 independent reflections

> 1335 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.05$
> $\theta_{\max }=30.55^{\circ}$
> $h=-11 \rightarrow 7$
> $k=-16 \rightarrow 16$
> $l=-12 \rightarrow 12$
> Intensity decay: negligible

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

C6-O21	$1.403(3)$	C14-C20	$1.522(4)$
C11-O22	$1.440(3)$	C16-C17	$1.303(4)$
C15-O23	$1.448(3)$	C19-N1	$1.488(4)$
C6-N1	$1.513(3)$	C20-N1	$1.486(4)$
O21-C6-C5	$111.9(2)$	C17-C16-C15	$123.5(3)$
O21-C6-C7	$110.9(2)$	C19-N1-C20	$108.2(2)$
N1-C6-C7	$111.4(2)$	C19-N1-C6	$101.6(2)$
C17-C16-C12	$124.5(3)$	C20-N1-C6	$99.2(2)$
C10-C5-C6-O21	$-174.7(2)$	C9-C8-C15-O23	$56.6(3)$
O21-C6-C7-C8	$-179.2(2)$	C11-C12-C16-C17	$-129.2(3)$
C8-C9-C11-O22	$-105.6(3)$	O23-C15-C16-C12	$-105.4(3)$
O22-C11-C12-C16	$55.9(3)$	C8-C15-C16-C17	$-168.4(3)$

Table 2
Ring-puckering parameters ($\left(\AA,{ }^{\circ}\right.$) for eight rings.

Ring	q_{2}	q_{3}	Q_{T}	θ
A	$0.014(3)$	$-0.517(3)$	$0.518(3)$	$178.5(3)$
B	$0.205(2)$	$-0.655(2)$	$0.686(2)$	$162.7(2)$
C	$0.805(3)$	$0.021(3)$	$0.805(3)$	$88.5(2)$
D	$0.149(3)$	$-0.668(3)$	$0.684(3)$	$167.4(2)$
E	$0.788(3)$	$-0.051(3)$	$0.789(3)$	$93.7(2)$
F	$0.929(3)$	$-0.022(3)$	$0.929(3)$	$91.4(2)$
G	$0.557(3)$			
H	$0.549(3)$			

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044
$$

$$
w R\left(F^{2}\right)=0.094
$$

$$
S=0.813
$$

2455 reflections
222 parameters
H -atom parameters constrained

The methyl H atoms on C18 and C19 and the hydroxyl H atoms attached to O21, O22 and O23 were allowed to ride on their parent atoms with $U_{\text {iso }}=1.5 U_{\text {eq }}$. The remaining H atoms were included at geometrically calculated positions and allowed to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SHELXTLNT (Bruker, 1999); program(s) used to solve structure: SIR97 (Cascarano et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai \& Huttner, 1994); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1019). Services for accessing these data are described at the back of the journal.

References

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SHELXTLNT. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Cascarano, G., Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Siliqi, D., Burla, M. C., Polidori, G. \& Camalli, M. (1996). Acta Cryst. A52, C-79.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Natsume, M. (1962). Chem. Pharm. Bull. Jpn, 10, 879-883.
Okamoto, T., Natsume, M., Zenda, H. \& Kamata, S. (1962). Chem. Pharm. Bull. Jpn, 10, 883-886.
Pelletier, S. W., Wright, L. H., Newton, M. G. \& Wright, H. (1970). Chem. Commun. pp. 98-99.
Saito, H., Usyama, T., Naka, N., Yagi, J. \& Okamoto, T. (1982). Chem. Pharm. Bull. 30, 1844-1850.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Zsolnai, L. \& Huttner, G. (1994). ZORTEP. University of Heidelberg,
Germany.

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0430 P)^{2}\right. \\
& +0.0279 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.004 \\
& \Delta \rho_{\max }=0.16 \mathrm{e}_{\mathrm{A}} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.006 \text { (2) }
\end{aligned}
$$

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Pseudokobusine. Erratum

Mehmet Akkurt

Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
Correspondence e-mail: akkurt@erciyes.edu.tr
In the paper by Bhattacharyya et al. [Acta Cryst. (2001), C57, 68-69], the chemical diagram of the title compound, $\mathrm{C}_{20} \mathrm{H}_{27^{-}}$ NO_{3}, is incorrect.

Comment

When comparing the revised diagram of pseudokobusine, (I), with the ORTEP drawing (Fig. 1), the N 1 atom is connected to

(I)

Figure 1

The structure of (I) showing 30\% probability displacement ellipsoids and the atom-numbering scheme.
the C6 atom of the hydroxyl group, but in the diagram published originally, the N 1 atom is not connected to a C atom bearing a hydroxyl group. The molecular formula of the erroneous structure would be $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3}$ and not $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3}$, as it should be.

References

Bhattacharyya, K., Kar, T., Bocelli, G., Righi, L. \& Joshi, B. S. (2001). Acta Cryst. C57, 68-69.

